Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
J Viral Hepat ; 31 Suppl 1: 21-25, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38606938

RESUMO

Attempts to achieve a functional cure or amelioration of the severe X linked bleeding disorders haemophilia A (factor VIII deficiency) and haemophilia B (factor IX deficiency) using AAV-based vectors have been frustrated by immune responses that limit efficacy and durability. The immune responses include adaptive and innate pathways as well as cytokine mediated inflammation, especially of the target organ cells-hepatocytes. Immune suppression has only been partly effective in clinical trials at ameliorating the immune response and the lack of good animal models has delayed progress in identifying mechanisms and developing more effective approaches to controlling these effects of AAV gene transfer. Here we discuss the arguments for and against more potent immunosuppression to improve factor expression after AAV-mediated gene therapy.


Assuntos
Hemofilia A , Hemofilia B , Animais , Hemofilia A/genética , Hemofilia A/terapia , Hemofilia B/genética , Hemofilia B/terapia , Terapia Genética , Terapia de Imunossupressão , Imunidade
2.
Taiwan J Ophthalmol ; 14(1): 15-26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38654984

RESUMO

Fuchs endothelial corneal dystrophy (FECD) is one of the most common corneal diseases that causes loss of visual acuity in the world. FECD is a genetically and pathogenetically heterogeneous disease that results in the failure of corneal endothelial cells to maintain fluid balance and functional homeostasis of the cornea. Corneal edema, central guttae formation, and bullae development are common corneal pathologies. Currently, the mainstay of FECD treatment is surgery. However, limited sources of corneal graft and postsurgical complications remain problematic. In recent years, with advances in medical science and technology, there have been a few promising trials of new treatment modalities for FECD. In addition to new surgical methods, novel modalities can be classified into pharmacological-associated treatment, cell therapy-associated treatment, and gene therapy-associated treatment. In this article, our primary focus is on the most recent clinical trials related to FECD, and we present a stepwise approach to enhance FECD management and ultimately improve patient outcomes. We thoroughly searched for FECD clinical trials and reviewed the study designs, methodologies, and outcomes of each trial conducted within the past decade. It is imperative for physicians to stay up-to-date with these cutting-edge treatment approaches.

3.
J Med Genet ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499336

RESUMO

BACKGROUND: As gene-specific therapy for inherited retinal dystrophy (IRD) advances, unified variant interpretation across institutes is becoming increasingly important. This study aims to update the genetic findings of 86 retinitis pigmentosa (RP)-related genes in a large number of Japanese patients with RP by applying the standardised variant interpretation guidelines for Japanese patients with IRD (J-IRD-VI guidelines) built upon the American College of Medical Genetics and Genomics and the Association for Molecular Pathology rules, and assess the contribution of these genes in RP-allied diseases. METHODS: We assessed 2325 probands with RP (n=2155, including n=1204 sequenced previously with the same sequencing panel) and allied diseases (n=170, newly analysed), including Usher syndrome, Leber congenital amaurosis and cone-rod dystrophy (CRD). Target sequencing using a panel of 86 genes was performed. The variants were interpreted according to the J-IRD-VI guidelines. RESULTS: A total of 3564 variants were detected, of which 524 variants were interpreted as pathogenic or likely pathogenic. Among these 524 variants, 280 (53.4%) had been either undetected or interpreted as variants of unknown significance or benign variants in our earlier study of 1204 patients with RP. This led to a genetic diagnostic rate in 38.6% of patients with RP, with EYS accounting for 46.7% of the genetically solved patients, showing a 9% increase in diagnostic rate from our earlier study. The genetic diagnostic rate for patients with CRD was 28.2%, with RP-related genes significantly contributing over other allied diseases. CONCLUSION: A large-scale genetic analysis using the J-IRD-VI guidelines highlighted the population-specific genetic findings for Japanese patients with IRD; these findings serve as a foundation for the clinical application of gene-specific therapies.

4.
Biomolecules ; 14(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540676

RESUMO

Dysferlinopathies refer to a spectrum of muscular dystrophies that cause progressive muscle weakness and degeneration. They are caused by mutations in the DYSF gene, which encodes the dysferlin protein that is crucial for repairing muscle membranes. This review delves into the clinical spectra of dysferlinopathies, their molecular mechanisms, and the spectrum of emerging therapeutic strategies. We examine the phenotypic heterogeneity of dysferlinopathies, highlighting the incomplete understanding of genotype-phenotype correlations and discussing the implications of various DYSF mutations. In addition, we explore the potential of symptomatic, pharmacological, molecular, and genetic therapies in mitigating the disease's progression. We also consider the roles of diet and metabolism in managing dysferlinopathies, as well as the impact of clinical trials on treatment paradigms. Furthermore, we examine the utility of animal models in elucidating disease mechanisms. By culminating the complexities inherent in dysferlinopathies, this write up emphasizes the need for multidisciplinary approaches, precision medicine, and extensive collaboration in research and clinical trial design to advance our understanding and treatment of these challenging disorders.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Animais , Proteínas Musculares/genética , Proteínas de Membrana/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Distrofias Musculares/genética , Mutação
6.
Adv Sci (Weinh) ; : e2309306, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483934

RESUMO

Peripheral nerve deficits give rise to motor and sensory impairments within the limb. The clinical restoration of extensive segmental nerve defects through autologous nerve transplantation often encounters challenges such as axonal mismatch and suboptimal functional recovery. These issues may stem from the limited regenerative capacity of proximal axons and the subsequent Wallerian degeneration of distal axons. To achieve the integration of sensory and motor functions, a spatially differential plasmid DNA (pDNA) dual-delivery nanohydrogel conduit scaffold is devised. This innovative scaffold facilitates the localized administration of the transforming growth factor ß (TGF-ß) gene in the proximal region to accelerate nerve regeneration, while simultaneously delivering nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) to the distal region to mitigate Wallerian degeneration. By promoting autonomous and selective alignment of nerve fiber gap sutures via structure design, the approach aims to achieve a harmonious unification of nerve regeneration, neuromotor function, and sensory recovery. It is anticipated that this groundbreaking technology will establish a robust platform for gene delivery in tissue engineering.

8.
Circ Genom Precis Med ; 17(1): e004305, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38288614

RESUMO

BACKGROUND: Pathogenic variants in PKP2 (plakophilin-2) cause arrhythmogenic right ventricular cardiomyopathy, a disease characterized by life-threatening arrhythmias and progressive cardiomyopathy leading to heart failure. No effective medical therapy is available to prevent or arrest the disease. We tested the hypothesis that adeno-associated virus vector-mediated delivery of the human PKP2 gene to an adult mammalian heart deficient in PKP2 can arrest disease progression and significantly prolong survival. METHODS: Experiments were performed using a PKP2-cKO (cardiac-specific, tamoxifen-activated PKP2 knockout murine model). The potential therapeutic, adeno-associated virus vector of serotype rh.74 (AAVrh.74)-PKP2a (PKP2 variant A; RP-A601) is a recombinant AAVrh.74 gene therapy viral vector encoding the human PKP2 variant A. AAVrh.74-PKP2a was delivered to adult mice by a single tail vein injection either before or after tamoxifen-activated PKP2-cKO. PKP2 expression was confirmed by molecular and histopathologic analyses. Cardiac function and disease progression were monitored by survival analyses, echocardiography, and electrocardiography. RESULTS: Consistent with prior findings, loss of PKP2 expression caused 100% mortality within 50 days after tamoxifen injection. In contrast, AAVrh.74-PKP2a-mediated PKP2a expression resulted in 100% survival for >5 months (at study termination). Echocardiographic analysis revealed that AAVrh.74-PKP2a prevented right ventricle dilation, arrested left ventricle functional decline, and mitigated arrhythmia burden. Molecular and histological analyses showed AAVrh.74-PKP2a-mediated transgene mRNA and protein expression and appropriate PKP2 localization at the cardiomyocyte intercalated disc. Importantly, the therapeutic benefit was shown in mice receiving AAVrh.74-PKP2a after disease onset. CONCLUSIONS: These preclinical data demonstrate the potential for AAVrh.74-PKP2a (RP-A601) as a therapeutic for PKP2-related arrhythmogenic right ventricular cardiomyopathy in both early and more advanced stages of the disease.


Assuntos
Displasia Arritmogênica Ventricular Direita , Adulto , Humanos , Camundongos , Animais , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/terapia , Displasia Arritmogênica Ventricular Direita/metabolismo , Placofilinas/genética , Miócitos Cardíacos/metabolismo , Arritmias Cardíacas/genética , Arritmias Cardíacas/terapia , Arritmias Cardíacas/metabolismo , Tamoxifeno/metabolismo , Progressão da Doença , Mamíferos/metabolismo
9.
Curr Gene Ther ; 24(2): 135-146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38282448

RESUMO

Maintaining a tumour cell's resistance to apoptosis (organized cell death) is essential for cancer to metastasize. Signal molecules play a critical function in the tightly regulated apoptotic process. Apoptosis may be triggered by a wide variety of cellular stresses, including DNA damage, but its ultimate goal is always the same: the removal of damaged cells that might otherwise develop into tumours. Many chemotherapy drugs rely on cancer cells being able to undergo apoptosis as a means of killing them. The mechanisms by which DNA-damaging agents trigger apoptosis, the interplay between pro- and apoptosis-inducing signals, and the potential for alteration of these pathways in cancer are the primary topics of this review.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Dano ao DNA/genética , Apoptose/genética , Morte Celular , Transdução de Sinais
10.
Circulation ; 149(4): 317-329, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37965733

RESUMO

BACKGROUND: Pathogenic variants in SCN5A can result in long QT syndrome type 3, a life-threatening genetic disease. Adenine base editors can convert targeted A T base pairs to G C base pairs, offering a promising tool to correct pathogenic variants. METHODS: We generated a long QT syndrome type 3 mouse model by introducing the T1307M pathogenic variant into the Scn5a gene. The adenine base editor was split into 2 smaller parts and delivered into the heart by adeno-associated virus serotype 9 (AAV9-ABEmax) to correct the T1307M pathogenic variant. RESULTS: Both homozygous and heterozygous T1307M mice showed significant QT prolongation. Carbachol administration induced Torsades de Pointes or ventricular tachycardia for homozygous T1307M mice (20%) but not for heterozygous or wild-type mice. A single intraperitoneal injection of AAV9-ABEmax at postnatal day 14 resulted in up to 99.20% Scn5a transcripts corrected in T1307M mice. Scn5a mRNA correction rate >60% eliminated QT prolongation; Scn5a mRNA correction rate <60% alleviated QT prolongation. Partial Scn5a correction resulted in cardiomyocytes heterogeneity, which did not induce severe arrhythmias. We did not detect off-target DNA or RNA editing events in ABEmax-treated mouse hearts. CONCLUSIONS: These findings show that in vivo AAV9-ABEmax editing can correct the variant Scn5a allele, effectively ameliorating arrhythmia phenotypes. Our results offer a proof of concept for the treatment of hereditary arrhythmias.


Assuntos
Doença do Sistema de Condução Cardíaco , Edição de Genes , Síndrome do QT Longo , Camundongos , Animais , Síndrome do QT Longo/genética , Síndrome do QT Longo/terapia , Síndrome do QT Longo/diagnóstico , Arritmias Cardíacas , Miócitos Cardíacos , Adenina , RNA Mensageiro , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Mutação
11.
J Yeungnam Med Sci ; 41(1): 13-21, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37218144

RESUMO

Gene therapy involves the introduction of foreign genetic material into host tissue to alter the expression of genetic products. Gene therapy represents an opportunity to alter the course of various diseases. Hence, genetic products utilizing safe and reliable vectors with improved biotechnology will play a critical role in the treatment of various diseases in the future. This review summarizes various important vectors for gene therapy along with modern techniques for potential craniofacial regeneration using gene therapy. This review also explains current molecular approaches for the management and treatment of cancer using gene therapy. The existing literature was searched to find studies related to gene therapy and its role in craniofacial regeneration and cancer treatment. Various databases such as PubMed, Science Direct, Scopus, Web of Science, and Google Scholar were searched for English language articles using the keywords "gene therapy," "gene therapy in present scenario," "gene therapy in cancer," "gene therapy and vector," "gene therapy in diseases," and "gene therapy and molecular strategies."

12.
J Thromb Haemost ; 22(4): 896-904, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38142844

RESUMO

Thrombotic thrombocytopenic purpura (TTP) is a life-threatening thrombotic disorder associated with a severe deficiency of ADAMTS-13-the protease that cleaves von Willebrand factor. Plasma therapy is the current standard of care for managing acute episodes of TTP, which involves removing patient plasma and replacing it with donor plasma to raise the level of ADAMTS-13 activity. Recently, therapies aimed at replacing ADAMTS-13 have been investigated as possible substitutes or add-ons to plasma therapy for congenital and immune-mediated TTP. Enzyme replacement therapy provides recombinant ADAMTS-13 via intravenous (i.v.) infusion to restore enzyme activity. Recombinant ADAMTS-13-loaded platelets localize to the site of thrombus formation in a more concentrated manner than enzyme replacement or plasma therapy. ADAMTS-13-encoding messenger RNA aims to induce a steady supply of secreted protein and gene therapy is a potentially curative strategy. Overall, targeted ADAMTS-13 replacement therapies may provide better outcomes than plasma therapy by achieving higher levels of ADAMTS-13 activity and a more sustained response with fewer adverse events. Herein, we describe targeted ADAMTS-13 replacement therapies for the treatment of TTP and discuss the advantages and limitations of each approach.


Assuntos
Púrpura Trombocitopênica Trombótica , Trombose , Humanos , Proteína ADAMTS13 , Plaquetas/metabolismo , Plasma/metabolismo , Fator de von Willebrand/uso terapêutico , Fator de von Willebrand/metabolismo
13.
J Neuromuscul Dis ; 11(1): 129-142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38160362

RESUMO

BACKGROUND: Spinal muscular atrophy (SMA) is a genetic neurodegenerative disorder with onset predominantly in infants and children. In recent years, newborn screening and three treatments, including gene replacement therapy (Onasemnogene abeparvovec-xioi), have become available in the United States, aiding in the diagnosis and treatment of children with SMA. OBJECTIVE: To evaluate parents' experiences with newborn screening and gene replacement therapy and to explore best practices for positive newborn screen disclosure and counseling of families. METHODS: We conducted semi-structured interviews (n = 32) and online surveys (n = 79) of parents whose children were diagnosed with SMA (on newborn screening or symptomatically) and treated with gene replacement therapy. RESULTS: Gene replacement therapy was most parents' first treatment choice, although concerns regarding long term efficacy (65%) and safety (51%) were common. Information provided during the newborn screening disclosure was quite variable. Only 34% of parents reported the information provided was sufficient and expressed need for more information about treatment. Although many parents experienced denial of the diagnosis at initial disclosure, 94% were in favor of inclusion of SMA on newborn screening. Parents were almost universally anxious following diagnosis and over half remained anxious at the time of study participation with uncertainty of the future being a key concern. Many parents had difficulty processing information provided during their first clinic appointment due to its complexity and their emotional state at the time. CONCLUSIONS: Utilizing this data, we provide a recommendation for the information provided in newborn screening disclosure, propose adjustments to education and counseling during the first clinic visit, and bring awareness of parents' mental health difficulties.


Assuntos
Atrofia Muscular Espinal , Triagem Neonatal , Lactente , Recém-Nascido , Criança , Humanos , Estados Unidos , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Pais/psicologia , Inquéritos e Questionários , Ansiedade
14.
Arq. neuropsiquiatr ; 82(1): s00441779503, 2024. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1533833

RESUMO

Abstract Spinal muscular atrophy linked to chromosome 5 (SMA-5q) is an autosomal recessive genetic disease caused by mutations in the SMN1. SMA-5q is characterized by progressive degeneration of the spinal cord and bulbar motor neurons, causing severe motor and respiratory impairment with reduced survival, especially in its more severe clinical forms. In recent years, highly effective disease-modifying therapies have emerged, either acting by regulating the splicing of exon 7 of the SMN2 gene or adding a copy of the SMN1 gene through gene therapy, providing a drastic change in the natural history of the disease. In this way, developing therapeutic guides and expert consensus becomes essential to direct the use of these therapies in clinical practice. This consensus, prepared by Brazilian experts, aimed to review the main available disease-modifying therapies, critically analyze the results of clinical studies, and provide recommendations for their use in clinical practice for patients with SMA-5q. This consensus also addresses aspects related to diagnosis, genetic counseling, and follow-up of patients under drug treatment. Thus, this consensus provides valuable information regarding the current management of SMA-5q, helping therapeutic decisions in clinical practice and promoting additional gains in outcomes.


Resumo Atrofia muscular espinhal ligada ao cromossomo 5 (AME-5q) é uma doença genética de herança autossômica recessiva causada por mutações no gene SMN1. A AME-5q cursa com degeneração progressiva dos motoneurônios medulares e bulbares, acarretando grave comprometimento motor e respiratório com redução da sobrevida, especialmente nas suas formas clínicas mais graves. Nos últimos anos, terapias modificadoras da doença altamente eficazes, ou que atuam regulando o splicing do exon 7 do gene SMN2 ou adicionando uma cópia do gene SMN1 via terapia gênica, têm surgido, proporcionando uma mudança drástica na história natural da doença. Dessa forma, o desenvolvimento de guias terapêuticos e de consensos de especialistas torna-se importante no sentido de direcionar o uso dessas terapias na prática clínica. Este consenso, preparado por especialistas brasileiros, teve como objetivos revisar as principais terapias modificadoras de doença disponíveis, analisar criticamente os resultados dos estudos clínicos dessas terapias e prover recomendações para seu uso na prática clínica para pacientes com AME-5q. Aspectos relativos ao diagnóstico, aconselhamento genético e seguimento dos pacientes em uso das terapias também são abordados nesse consenso. Assim, esse consenso promove valiosas informações a respeito do manejo atual da AME-5q auxiliando decisões terapêuticas na prática clínica e promovendo ganhos adicionais nos desfechos finais.

15.
Pathol Res Pract ; 253: 155030, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101158

RESUMO

Pandemic management requires societal coordination, global orchestration, respect for human rights and defence of ethical principles. Yet some approaches to the COVID-19 pandemic, driven by socioeconomic, corporate, and political interests, have undermined key pillars of ethical medical science. We explore significant mistakes that may have occurred in recent pandemic control, in order to better navigate the future. Within corporate and geopolitical infrastructure, we review the COVID-19 pandemic and novel mRNA and viral-vector DNA COVID-19 vaccines, deployed by wealthy western countries. The pandemic, together with rollouts of unconventional, gene-based vaccine technology, has provided experimental opportunity to engineer social control of entire populations. The haste and scale of development, production, and distribution of these new pharmaceuticals is unprecedented in history. Key phase III clinical trials for these products are yet to be fully completed, despite administration to billions of people. Mass vaccination of workforces has been mandated, and vaccine mandates correlate with excess mortality. Many independent data sets concur - we have experienced a pandemic of viral illness, followed by a pandemic of vaccine injury. For Australia, matters have operated the other way around. Vaccination followed later by the main viral wave. Australian excess mortality data correlates with this. Neither risk nor cost can justify these products for the vast majority of people. Lack of efficacy against infection and transmission, and the equivalent benefits of natural immunity, obviate mandatory therapeutics. With the many gene-based pharmaceuticals planned, a new era of pathology lies ahead. We should pause, reflect, and reaffirm essential freedoms, welcome the end of the COVID-19 pandemic, embrace natural immunity, and lift all mandated medical therapy.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Pandemias/prevenção & controle , Austrália/epidemiologia , DNA Viral
17.
Genes (Basel) ; 14(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38136984

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is an enigmatic, ultra-rare genetic disorder characterized by progressive heterotopic ossification, wherein soft connective tissues undergo pathological transformation into bone structures. This incapacitating process severely limits patient mobility and poses formidable challenges for therapeutic intervention. Predominantly caused by missense mutations in the ACVR1 gene, this disorder has hitherto defied comprehensive mechanistic understanding and effective treatment paradigms. This write-up offers a comprehensive overview of the contemporary understanding of FOP's complex pathobiology, underscored by advances in molecular genetics and proteomic studies. We delve into targeted therapy, spanning genetic therapeutics, enzymatic and transcriptional modulation, stem cell therapies, and innovative immunotherapies. We also highlight the intricate complexities surrounding clinical trial design for ultra-rare disorders like FOP, addressing fundamental statistical limitations, ethical conundrums, and methodological advancements essential for the success of interventional studies. We advocate for the adoption of a multi-disciplinary approach that converges bench-to-bedside research, clinical expertise, and ethical considerations to tackle the challenges of ultra-rare diseases like FOP and comparable ultra-rare diseases. In essence, this manuscript serves a dual purpose: as a definitive scientific resource for ongoing and future FOP research and a call to action for innovative solutions to address methodological and ethical challenges that impede progress in the broader field of medical research into ultra-rare conditions.


Assuntos
Miosite Ossificante , Ossificação Heterotópica , Humanos , Miosite Ossificante/genética , Miosite Ossificante/terapia , Proteômica , Doenças Raras , Ossificação Heterotópica/genética , Ossificação Heterotópica/patologia , Osso e Ossos/patologia
18.
Ann Med Surg (Lond) ; 85(12): 6298-6301, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38098548

RESUMO

This article provides an updated overview of Vyjuvek, a Food and Drug Administration (FDA) approved medication and its potential in managing dystrophic epidermolysis bullosa (DEB). DEB is a rare genetic disorder characterized by skin fragility, blistering, wounds, and scarring. The underlying cause of DEB is the impaired production of type VII collagen (COL7), leading to weakened anchoring fibrils in the skin. Vyjuvek is the first topical gene therapy for DEB, utilizing a genetically modified HSV-1 (herpes simplex virus 1) vector to express human COL7 and promote wound healing. Clinical trials have shown that Vyjuvek increases the probability of complete wound healing compared to placebo. Although further research is needed, Vyjuvek represents a significant advancement in addressing the unmet medical needs of patients with DEB, offering hope for improved quality of life and long-term complication reduction.

19.
Health Policy Open ; 5: 100103, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38023441

RESUMO

Growth in the availability of cell and gene therapies (CGTs) promises significant innovation in the treatment of serious diseases, but the high cost and one-time administration of CGTs has also raised concern about strain on health plan budgets and inequity in access. We used coverage information from the Tufts Medical Center Specialty Drug Evidence and Coverage (SPEC) database for 18 large commercial health plans in the US and information from state Medicaid websites to examine variation in coverage of 11 CGTs in August 2021. We found that US commercial and Medicaid health plans imposed restrictions in 53.5 % and 68.3 % of their coverage policies for the 11 included CGTs, respectively. In addition, we identified significant variation in access to CGTs across commercial plans and across Medicaid plans. Coverage restrictions for certain CGTs were more common than others; clinical requirements were often (but not always) consistent with the inclusion criteria for the clinical trial central to the drug's approval. We conclude that there is variation in access to CGTs, creating differential patient access.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...